
Why Rust?
Talking about the giant crab in the room.

- Kartavya Vashishtha

This session is interactive

• Recommended that you have a laptop with you.

• Install cargo and rust-analyzer in your IDE of choice.
(also gcc if you don’t have it)

Resources to use if when you get lost

• Rust in half an hour:
https://fasterthanli.me/articles/a-half-hour-to-learn-rust

• The Rust Book:
https://doc.rust-lang.org/book/

https://fasterthanli.me/articles/a-half-hour-to-learn-rust
https://doc.rust-lang.org/book/

Reasons to listen to this presentation:

• “Microsoft rewriting core Windows libraries in Rust”
- The Register

• “…over 1,000 Google developers… have authored and committed Rust
code as some part of their work in 2022”

- Rust fact vs. fiction: 5 Insights from Google's Rust journey in 2022

• “For the past 18 months we have been adding Rust support to the
Android Open Source Project…”

- Rust in the Android platform, Google Security Blog

Put another way:

•Rust is a systems language: it makes (most) things
explicit.

• Features borrow checking, a paradigm to prevent
memory unsafety.

•Has a powerful type system to shift as many errors to
compile time as possible.

Problem 1: Opening a File

The C Approach

#include<stdio.h>

int main () {
FILE* fp = fopen("example.txt", "r");
char buf[30] = {0};
fgets(buf, 30, fp); // safer than gets
printf("%s", buf);

}

The C Approach

Let’s run it.

The C Approach

➜ ~/presentations/why-rust ./a.out
[1] 17853 segmentation fault ./a.out

The Rust Approach

use std::{fs::File, io::Read};

fn main() {
let f: Result<File, std::io::Error> = File::open("src/main.rs");

let mut f: File = f.unwrap();

let mut buf: [u8; 30] = [0; 30];
f.read_exact(&mut buf).unwrap();

}

The Rust Approach (step-by-step)

use std::{fs::File, io::Read};

fn main() {
let f: Result<File, std::io::Error> = File::open("src/main.rs");
//...

The Rust Approach (step-by-step)2

/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).

///

/// See the [module documentation](self) for details.

#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]

#[must_use = "this `Result` may be an `Err` variant, which should be handled"]

#[rustc_diagnostic_item = "Result"]

#[stable(feature = "rust1", since = "1.0.0")]

pub enum Result<T, E> {

/// Contains the success value

#[lang = "Ok"]

#[stable(feature = "rust1", since = "1.0.0")]

Ok(#[stable(feature = "rust1", since = "1.0.0")] T),

/// Contains the error value

#[lang = "Err"]

#[stable(feature = "rust1", since = "1.0.0")]

Err(#[stable(feature = "rust1", since = "1.0.0")] E),

}

The Rust Approach (step-by-step)2

Enums and structs store data.

enum Result<T, E> {
 Ok(T),
 Err(E),

}

Aside: Abstract Data Types

• Sum types can be one of several possibilities (i.e. similar
to an enum)

• In mathy language, the set of a sum type is the union of
the sets of the constituent types.

•Product types are combinations of several types
(i.e. similar to a struct or tuple)

• In mathy language, the set of a product type is the
cartesian product of the sets of the constituent types.

The Rust Approach (step-by-step)2

•Enums and structs store data.

•Can have methods attached to them that may
borrow, mutably borrow, or consume their
associated objects.

The Rust Approach (step-by-step)2

enum Result<T, E> {

 Ok(T),

 Err(E),

}

impl<T, E> Result<T, E> {

 // used as res.unwrap() where res: Result<T, E>

 fn unwrap(self) -> T {

 match self {

 Result::Ok(val) => val,

 Result::Err(err) => panic!("Error!"),

 }

 }

}

The Rust Approach (step-by-step)

use std::{fs::File, io::Read};

fn main() {
 let f: Result<File, std::io::Error> = File::open("src/main.rs");

 let mut f: File = f.unwrap();
 //...

Note that a variable must be declared mut to modify it in any
way.*

The Rust Approach (step-by-step)

use std::{fs::File, io::Read};

fn main() {
 //...

 let mut buf: [u8; 30] = [0; 30];
 f.read_exact(&mut buf).unwrap();

}

Declare a mutable array of u8 (unsigned 8-byte integers), and
pass a mutable reference to read_exact.

The Rust Approach (step-by-step)2

What’s the signature of read_exact?

// somewhere inside the std::io::Read module:
fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error> {
 //...
}

 buf: &mut [u8] is an array slice that consists of the pointer
 to the array and its length.

The Rust Approach (step-by-step)

use std::{fs::File, io::Read};

fn main() {
 let f: Result<File, std::io::Error> = File::open("src/main.rs");
 //...
 let mut buf: [u8; 30] = [0; 30];

}

Note that the code doesn’t explicitly close the file anywhere.
When f goes out of scope, it runs a drop function (destructor)
that closes the file automatically.

Take a breath.
We’re just getting started.

Problem 2:
Iterating Over a Vector

Iterating in C++
#include <bits/stdc++.h>

using namespace std;

int main()
{
 std::vector<int> vec{1, 2, 3, 5, 6};

 // Find the element with value 3.
 auto it = find(vec.begin(), vec.end(), 3);
 if (it != vec.end()) { // check if element was found
 vec.insert(it, 4); // insert 4 after 3
 }

 // print the rest of the elements
 for(; it != vec.end(); it++)
 std::cout<< *it << " ";

}

Iterating in C++

➜ ~/presentations/why-rust ./a.out
-674674232 6 0 49 0 1 2 3 4 5 6

Iterating in C++

If you think that’s contrived,

CVE-2016-9079 (a vulnerability in Firefox) is caused by code equivalent to:

int main()
{
 std::vector<int> vec{1, 2, 3, 5, 6};

 int last = 0;
 for (auto it = vec.begin(); it != vec.end(); it++) {
 if (is_num_bad(*it)) {
 vec.insert(it, -1);
 }
 }

}

Translating to Rust
fn main () {
 let mut v: Vec<i32> = vec![1, 2, 3, 4, 5];
 let mut it = v.iter();

 let idx: Option<usize> = it.position(|&x| x == 3);

 if let Some(i) = idx {
 v.insert(i, 4); // insert 4 at index i
 }

 it.for_each(|x| print!("{x} "));
}

The Option enum
 //...

 let idx: Option<usize> = it.position(|&x| x == 3);

 if let Some(i) = idx {

 v.insert(i, 4);

 }

 //...
enum Option<T> {

Some(T),
None

}

Translating to Rust
fn main () {
 let mut v: Vec<i32> = vec![1, 2, 3, 4, 5];
 let mut it = v.iter();

 let idx: Option<usize> = it.position(|&x| x == 3);

 if let Some(i) = idx {
 v.insert(i, 4);
 }

 it.for_each(|x| print!("{x} "));
}

Let’s run it!
➜ ~/presentations/why-rust cargo build

Compiling why-rust v0.1.0 (/home/desmond-lin-7/presentations/why-rust)

error[E0502]: cannot borrow `v` as mutable because it is also borrowed as immutable

 --> src/main.rs:88:13

 |

83 | let mut it = v.iter();

 | -------- immutable borrow occurs here

...

88 | v.insert(idx, -1);

 | ^^^^^^^^^^^^^^^^^ mutable borrow occurs here

...

91 | it.for_each(|x| print!("{x}"));

 | -- immutable borrow later used here

For more information about this error, try `rustc --explain E0502`.

Having a look at the signatures…

And we find:

pub fn iter(&self) -> ... { ... }

pub fn insert(&mut self, index: usize, element: T)

XOR Mutability

• Can take a reference to a value with & or &mut.

• Can have either:
• any number of & references live at one time.
• or a single &mut reference.

• & references are write-only.

• &mut references are read and write.

XOR Mutability Example 1:
fn main() {
 let s = String::from("hello");
 change(&s);
}

fn change(some_string: &String) {
 some_string.push_str(", world");
}

cannot borrow `*some_string` as mutable, as it is behind a `&`
reference`some_string` is a `&` reference, so the data it refers to
cannot be borrowed as mutable

XOR Mutability Example 2:
fn main() {
 let mut s = String::from("hello");

 let r1 = &mut s;
 let r2 = &mut s;

 println!("{}, {}", r1, r2);
}

cannot borrow `s` as mutable more than once at a time

But what if I know what I’m doing?

Rust does have an escape hatch to disable XOR mutability.

It’s called unsafe.

There’s an entire second book (The Rustonomicon) for that.

Unsafe is very hard to write correctly, but the situation is
improving.

Problem 3:
Returning a Pointer

The C Approach
struct example {int a; int b;};

int* get_a(struct example *e) {
 return &e->a;
}

int main () {
 struct example *e = malloc(sizeof(struct example));
 e->a = 1; e->b = 2;
 int* a = get_a(e);

 free(e);

 printf("%d\n", *a);
}

The C Approach

➜ ~/presentations/why-rust ./a.out
1666543595

Translating to Rust
struct Example {a: i32, b: i32}

fn get_a (e: &Example) -> &i32 {
 &e.a

}

fn main () {
 let ex = Example { a: 1, b: 2 };
 let a = get_a(&ex);

 drop(ex);

 print!("{}", a);
}

Let’s run it!
➜ ~/presentations/why-rust cargo build

Compiling why-rust v0.1.0 (/home/desmond-lin-7/presentations/why-rust)

error[E0505]: cannot move out of `ex` because it is borrowed

 --> src/lib.rs:100:10

 |

98 | let a = get_a(&ex);

 | --- borrow of `ex` occurs here

99 |

100 | drop(ex);

 | ^^ move out of `ex` occurs here

101 |

102 | print!("{}", a);

 | - borrow later used here

Let’s run it!
➜ ~/presentations/why-rust cargo build

Compiling why-rust v0.1.0 (/home/desmond-lin-7/presentations/why-rust)

error[E0505]: cannot move out of `ex` because it is borrowed

 --> src/lib.rs:100:10

 |

98 | let a = get_a(&ex);

 | --- borrow of `ex` occurs here

99 |

100 | drop(ex);

 | ^^ move out of `ex` occurs here

101 |

102 | print!("{}", a);

 | - borrow later used here

pub fn drop<T>(x: T) {}

Move Semantics

Seek shelter.

Wall of text incoming.

Move Semantics

Because variables are in charge of freeing their own resources,
resources can only have one owner. This also prevents
resources from being freed more than once. Note that not all
variables own resources (e.g. references).

When doing assignments (let x = y) or passing function
arguments by value (foo(x)), the ownership of the resources
is transferred. In Rust-speak, this is known as a move.

After moving resources, the previous owner can no longer be
used. This avoids creating dangling pointers.

Type Shenanigans

Lambdas

Rust takes a lot of influence from functional languages.

It features:

• Lambdas / anonymous functions / Closures

let add_one = |x| x + 1;
let add_one = |x: i32| x + 1;

Traits

Rust also has interfaces (traits)

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;

}

Any type that wishes to implement Iterator must prove a next
method, and a type for the return item.

Traits

Example implementation:

impl Iterator for MyStruct {
 type Item = u32;

 fn next(&mut self) -> Option<Self::Item> {
 todo!("return the next item")
 }

}

Traits

Can also have default implementations:

pub fn iterator_stuff(v: Vec<u32>) -> Vec<u32> {
 v.into_iter() // get an iterator from the vector
 .filter(|&x| x % 2 == 0)
 .map(|x| x * 2)
 .collect()

}
Implementing Iterator’s next gives you access to ~76 methods
(fold, flatten, reduce, map, filter, etc.)

Impls can be conditional

enum Result<T, E> {
 Ok(T),
 Err(E),

}
impl<T, E: Debug> Result<T, E> {
 fn expect(self) -> T {
 match self {
 Result::Ok(val) => val,
 Result::Err(err) => panic!("Error: {:?}", err),
 }
 }

}

We implement expect for all
Result<T, E> where E: Debug

Bonus: The Typestate Pattern

struct Start; // expecting status line
struct Headers; // expecting headers or body

trait ResponseState {}
impl ResponseState for Start {}
impl ResponseState for Headers {}

struct HttpResponse<S: ResponseState> {
 status_code: u16,
 body: Vec<u8>,
 _marker: std::marker::PhantomData<S>, // have to use S somewhere

}

Bonus: The Typestate Pattern
fn new_response() -> HttpResponse<Start> { todo!() }

impl HttpResponse<Start> {
 fn set_status_code(self, status_code: String) -> HttpResponse<Headers> {
 todo!()
 }
}

impl HttpResponse<Headers> {
 fn set_body(self, body: Vec<u8>) -> HttpResponse<Headers> { todo!() }
}

Bonus: Explicit Lifetimes
pub fn find_line_starts_with<'a>(needle: &str, haystack: &'a str)
 -> Vec<&'a str>
{
 let mut headings = Vec::new();
 for line in haystack.lines() {
 if line.starts_with(needle) {
 headings.push(line);
 }
 }
 headings

}

Lifetime of returned vector
depends on lifetime of
haystack ('a)

Project:
Running Average Temperature

git clone

https://github.com/DesmondWillowbrook/
rust-presentation-project

This is where the slides end.

How about we take this to the
whiteboard?

A few memes to calm down

Improving the unwrap function

enum Result<T, E> {

 Ok(T),

 Err(E),

}

impl<T, E> Result<T, E> {

 fn unwrap(self) -> T {

 match self {

 Result::Ok(val) => val,

 Result::Err(err) => panic!("Error!"),

 }

 }

}

We want to print the error.

Improving the unwrap function

enum Result<T, E> {

 Ok(T),

 Err(E),

}

impl<T, E> Result<T, E> {

 fn unwrap(self) -> T {

 match self {

 Result::Ok(val) => val,

 Result::Err(err) => panic!("Error!"),

 }

 }

}

We want to print the error.
But not all types can be printed.

Enter: Traits

pub trait Debug {
 fn fmt(&self, f: &mut Formatter<'_>) -> Result;

}

Formatter is type that you can write text to.

Enter: Traits

struct Position {
 longitude: f32,
 latitude: f32,

}

impl Debug for Position {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "({}, {})", self.longitude, self.latitude)
 }

}

Improving the unwrap function

enum Result<T, E> {

 Ok(T),

 Err(E),

}

impl<T, E: Debug> Result<T, E> {

 fn expect(self) -> T {

 match self {

 Result::Ok(val) => val,

 Result::Err(err) => panic!("Error: {:?}", err),

 }

 }

}

{:?} calls the Debug
implementation on type E

Post-talk notes

• Lifetime confusion: slide “Explicit lifetimes” returned lifetimes expire
when source lifetime expires because of mutable reference created to
buffer.

• Talk about ownership model more explicitly. Probably omit self, &self,
&mut self in favor of explicit parameter passing.

	Slide 1: Why Rust?
	Slide 2: 🚨This session is interactive 🚨
	Slide 3: Resources to use if when you get lost
	Slide 4: Reasons to listen to this presentation:
	Slide 5
	Slide 6
	Slide 7: Put another way:
	Slide 8: Problem 1: Opening a File
	Slide 9: The C Approach
	Slide 10: The C Approach
	Slide 11: The C Approach
	Slide 12: The Rust Approach
	Slide 13: The Rust Approach (step-by-step)
	Slide 14: The Rust Approach (step-by-step)2
	Slide 15: The Rust Approach (step-by-step)2
	Slide 16: Aside: Abstract Data Types
	Slide 18: The Rust Approach (step-by-step)2
	Slide 19: The Rust Approach (step-by-step)2
	Slide 20: The Rust Approach (step-by-step)
	Slide 21: The Rust Approach (step-by-step)
	Slide 22: The Rust Approach (step-by-step)2
	Slide 23: The Rust Approach (step-by-step)
	Slide 24: Take a breath. We’re just getting started.
	Slide 25: Problem 2: Iterating Over a Vector
	Slide 26: Iterating in C++
	Slide 27: Iterating in C++
	Slide 28: Iterating in C++
	Slide 29: Translating to Rust
	Slide 30: The Option enum
	Slide 31: Translating to Rust
	Slide 32: Let’s run it!
	Slide 33: Having a look at the signatures…
	Slide 34: XOR Mutability
	Slide 35: XOR Mutability Example 1:
	Slide 36: XOR Mutability Example 2:
	Slide 37: But what if I know what I’m doing?
	Slide 38: Problem 3: Returning a Pointer
	Slide 39: The C Approach
	Slide 40: The C Approach
	Slide 41: Translating to Rust
	Slide 42: Let’s run it!
	Slide 43: Let’s run it!
	Slide 44: Move Semantics
	Slide 45: Move Semantics
	Slide 46: Type Shenanigans
	Slide 47: Lambdas
	Slide 48: Traits
	Slide 49: Traits
	Slide 50: Traits
	Slide 51: Impls can be conditional
	Slide 52: Bonus: The Typestate Pattern
	Slide 53: Bonus: The Typestate Pattern
	Slide 54: Bonus: Explicit Lifetimes
	Slide 55: Project: Running Average Temperature
	Slide 56: git clone https://github.com/DesmondWillowbrook/ rust-presentation-project
	Slide 57: This is where the slides end. How about we take this to the whiteboard?
	Slide 58: A few memes to calm down
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Improving the unwrap function
	Slide 64: Improving the unwrap function
	Slide 65: Enter: Traits
	Slide 66: Enter: Traits
	Slide 67: Improving the unwrap function
	Slide 68: Post-talk notes

